AUDIT OF WALLET IOS APPLICATION

I/} Zzokyo

August 18th 2023 | v. 1.0

TECHNICAL SUMMARY

MarsDao engaged Zokyo to conduct a security assessment on their IOS Mobile application
beginning on June 5th and ending on August 18th, 2023. MarsDao (MDAQ) Wallet is the
most user-friendly cryptocurrency wallet. Send, receive, and store Bitcoin and many other
cryptocurrencies and digital assets safely and securely with the MDAO Wallet mobile app.
The security assessment was scoped to the IOS mobile application
(com.ttmbank.wallet.app). An audit of the security risk and implications regarding the
changes introduced by the development team at MarsDAO prior to its production release,
shortly following the assessment deadline. Though this security audit’s outcome is
satisfactory, only the most essential aspects were tested and verified to achieve objectives
and deliverables set in the scope due to time and resource constraints. It is essential to note
the use of the best practices for secure Mobile application development.

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

1

Table of Contents

Auditing Strategy and Techniques Applied 3
Executive Summary 5
Structure and Organization of the Document 6
Complete Analysis 7

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

2

AUDITING STRATEGY AND TECHNIQUES APPLIED

Zokyo performed a combination of manual and automated security testing to balance
efficiency, timeliness, practicality, and accuracy in regard to the scope of the penetration
test. The majority of the time was spent evaluating its use of mnemonic seed Protection .
The following phases and associated tools were used throughout the term of the audit:
» Research into architecture, purpose, and use of client wallet.
e Manual code read and analysis.
e Reverse engineering of the hashing and encryption functions used Inside the wallet.
» Scanning of code used to locate bugs or security flaws.(MOBSF)
e Proxying the traffic from the local client to the external Internet to determine the traffic
and data leaving the system. (REDUX, POSTMAN, BURP SUITE)
e Multiple IOS mobile applications Pen-test tools like frida, objection etc .
Audit is focused on various aspects to ensure the security of the mobile application and
includes:
» Implementation of correctness and adherence to industry best practices.
e Exposure of critical information during user interactions, including authentication
mechanisms.
» Adversarial actions and attacks that could impact funds, such as draining or manipulating
funds.
e Proper management of funds via transactions to prevent mismanagement.
» Identification and remediation of vulnerabilities in the code, as well as ensuring secure
interaction between the related and network components.
e Secure management of encryption and storage of private keys, including the key
derivation process.
e Prevention of inappropriate permissions and excess authority.
e Ensuring data privacy, prevention of data leakage, and maintaining information integrity.
» Identification and remediation of any other potential security risks, as identified during
the initial analysis phase.

In summary, Zokyo identified a few security risks and recommends performing further
testing to validate extended safety and correctness in context to the whole structure

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

3

SCOPE:

The following scope was audited by Zokyo team :

IOS Application : https://apps.apple.com/us/app/mdao-wallet/id1540851562
Application Name : MDAO-Wallet

Version: 2.2.4

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

4

https://apps.apple.com/us/app/mdao-wallet/id1540851562

Executive Summary

There was one medium issue found during the audit and some low severity.

They are described in detail in the “"Complete Analysis” section.

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

5

STRUCTURE AND ORGANIZATION OF THE DOCUMENT

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the MarsDAO team and the MarsDAO team is aware of it, but they have chosen to not
solved it. The issues that are tagged as “Verified” contain unclear or suspicious functionality
that either needs explanation from the Client or remains disregarded by the Client.
Furthermore, the severity of each issue is written as assessed by the risk of exploitation or
other unexpected or otherwise unsafe behavior:

Critical ’ Low
The issue affects the contract in such The issue has minimal impact on the
a way that funds may be lost, contract’s ability to operate.
allocated incorrectly, or otherwise
result in a significant loss. Informational
. The issue has no impact on the
‘ High contract’s ability to operate.

The issue affects the ability of the
contract to compile or operate in a
significant way.

‘ Medium

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

6

COMPLETE ANALYSIS

FINDINGS SUMMARY

Title Risk Status

1 Touch ID authentication Bypass Medium Resolved

2 Lack of SSL Pinning Low Resolved

3 Lack of Jailbreak Detection Low Resolved

4 Snapshot Data Disclosure Low Resolved

5 Insufficient Debugging Protections Low Unresolved
6 Lack Of Token Name, Symbol And Decimal Validation Low Unresolved
Vi Lack of _RESTRICT segment in the Application Binary Low Unresolved
8 Binary makes use of insecure API(s) Low Unresolved

MARSDAO WALLET APPLICATION AUDIT

I/} zokyo

7

Touch ID authentication Bypass

Description :

Many users rely on biometric authentication like Face ID or Touch ID to enable secure,
effortless access to their devices. As a fallback option, and for devices without biometry, a
passcode or password serves a similar purpose. Use the LocalAuthentication framework to
leverage these mechanisms in your app and extend authentication procedures your app
already implements.

To maximize security, your app never gains access to any of the underlying authentication
data. You can’t access any fingerprint images, for example. The Secure Enclave, a hardware-
based security processor isolated from the rest of the system, manages this data out of
reach even of the operating system. Instead, you specify a particular policy and provide
messaging that tells the user why you want them to authenticate. The framework then
coordinates with the Secure Enclave to carry out the operation. Afterwards, you receive only
a Boolean result indicating authentication success or failure.

Problem Details :

When we run the ios ui biometrics_bypass command, a hook is executed that listens for
invocations of the -[LAContext evaluatePolicy:localizedReason:reply:] selector. If the
evaluate policy method is called, the hook will replace the success boolean to a True in the
code block that is executed when a reply is received.

Proof of Concept
The following is needed in order to reproduce this issue:
Step 1 - Install the Lyra application and set up TouchID.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

8

Fa App Store 9 = 9:41 AM

< Safety

PiN-code

Biometrics

Password

Automatic blocking
iImmediately

Step 2 - Connect your iDevice with the PC. Run the following command from frida
configured terminal to list the opened applications name.

frida-ps -Ua

Step 3 - The apps are usually running by their own names “com.ttmbank.wallet.app” as

shown.

sh-3.2# frida-ps —-Ua

PID Name Identifier
A
3230 Calendar com.apple.mobilecal
3999 Camera com.apple.camera
4271 Cydia com.saurik.Cydia

4267 MDAO Wallet

com. ttmbank.wallet.app

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

9

Step 4 - Run objection with the commands like: objection -g com.ttmbank.wallet.app explore

sh-3.2# objection —-g com.ttmbank.wallet.app explore
Using USB device “iPhone’

|V PSR 5 () IS [

I
L«]l - L)= 21 1.1 |
B s) [B = (] B e S
| ___](object)inject(ion) vi.11.0

Runtime Mobile Exploration
by: @leonjza from @sensepost

r

[tab)] for command s LUggest LONS

com.ttmbank.wallet.app on (iPhone: 13.3.1) [usb] # |

Step 5 - Use ios ui biometrics_bypass command and observe the application prompted for
TouchID. Click on Cancel.

com. ttmbank.wallet.app on {iPhone: 13.3.1) [usb] # ios wi biometrice_bypass

{sgent) Registerimg job 988758. Type: ios-biometrics-disable-evalustePolicy

tlgantF Registering job 8%$23R. Type: ios-biometrics-disable-evaluateAccessControl

com. ttmbank.wallet.app an {(iPhone: 13.3.1) [usb] # (agent) [4B81881] 05 authentlcation response:
Eauentr LE1881] Marking OS5 response as True instead

(agent) [518594] 05 authentication response:

(agent) [5185%4] Biometrics bypass hook complete (evaluastePolicy)

fugent) [£81881)] Biometrics bypass hook complete (evaluatePolicy)

i , T LSk

sllet.app on (iPhone: 13.3.1] [uAl ¢ (apent) [518594] Localized Reason for suth requiremsnt [evalustePaliey): Authariral

{agent) [& Localizred Reason for suth reguirement [evalwstePolicyl: Authorizetion
{ogemt) [Localized Reason for suth roguirement [evalustePolicyl: Authorization
{agont) [442230] Localized Reason for auth reguiresent [evaluatePolicy): Authorization
{agent) [442730] DS luthlnl:l.-cltiun response:

ﬂﬂﬁlnll WA ITA0] Markimg OF rosponsas o Troe LAstoad

cageant) [9eATSR] OF suthanmt LCiElI:Il"I ToaponEs:

(agant) [401501] OF suthentication respones:

{agant) (! | OF suthentication responso:

{agant) I ntrics g s complate {evaluatePolioy)

I:lﬂlnll SH1EEL] E mnirice bypass ook complete feveluatePolicyl

ﬂﬂg.ﬂll TATER] Blomatirice Bypaee Mook complete {ovalustePolicy]

fagant) [« 3] | [I & complats {avaluatePolicy)

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

10

11:39 o B

$0.00 @ ot

Fulti-coin wallet 1 ~ 0 +

. IR £01.00
CE

2000

Precondition:
If an attacker manages to get physical access to the victim device, then they can bypass the
lock screen and access the logged-in user data.

Recommendation:

A better way to securely save the data would be to save the data in the keychain and protect
it with appropriate keychain attributes (for e.g
ksecattraccessiblewhenpasscodesetthisdeviceonly), which require touch ID or device
passcode authentication to access the keychain content. This will make it harder for the
attacker to get the data since to gather the information from the keychain the user would
actually have to authenticate with Touch ID or enter the passcode, depending on which
access control he applied, and also the logic is managed by the OS and not the application.

Biometric authentication via the Local Authentication framework is easy to implement, it is
not recommended to be used for sensitive applications, such as banking or other financial

apps.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

11

Lack of SSL Pinning

Description:

Certificate pinning is the process of associating the backend server with a particular X.509
certificate or public key instead of accepting any certificate signed by a trusted certificate
authority. After storing ("pinning") the server certificate or public key, the mobile app will
subsequently connect to the known server only. Withdrawing trust from external certificate
authorities reduces the attack surface (after all, there are many cases of certificate
authorities that have been compromised or tricked into issuing certificates to impostors).

The certificate can be pinned and hardcoded into the app or retrieved at the time the app
first connects to the backend. In the latter case, the certificate is associated with ("pinned"
to) the host when the host is seen for the first time. This alternative is less secure because
attackers intercepting the initial connection can inject their own certificates.

Problem Details

During analysis, it has been observed that SSL pinning is not enabled in the MDAO iOS
application and it is possible to intercept all requests and responses. Please refer to the
below proof of concept.

Proof of Concept

The following is needed in order to reproduce this issue:

Steps to Reproduce

Step 1 - Set up the web-proxy tool (Burp Suite) to listen on any port (8080).

Step 2 - Install the Burp Suite CA certificate onto the iOS device with the certificateinstaller.
Step 3 - Follow the WiFi setting and set the host system’s IP as a proxy system on theiOS

device.

intercept HTTP higtory WaebSockets history Options [R K | Maovie Recording
(7) Proxy Listeners 4 Configure Proxy
J'Lﬁ.; Burp Prooy uses listenars 1o ecehe incoming HTTP equests I

Add Aunning Intedace Invisitle

Edit ' 182.168. 1. 208080)

Off
Ramove

Manual

Automatic

Each installation of Burp generates its own CA certificate that |
Bum.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

12

Step 4 - Now start navigating through the iOS application, and at the same time, you can
observe traffic in the burp.

If SSL pinning is not implemented, then all the communication between the application and
the server could be intercepted by an attacker. Because of this, attackers can craft malicious
requests to the server and look for multiple vulnerabilities. Automated attacks can be
mounted against app with the help of a proxy tool.

Recommendation:
Following are the ways to implement SSL pinning:

An open-source SSL pinning library for iOS and OS X was released at Black Hat 2015, which
provides an easy-to-use API for deploying pinning within an App: h ttps://github.com/
datatheorem/TrustKit

When using NSURLConnection, iOS pinning is performed through a
NSURLConnectionDelegate. The delegate must implement
connection:canAuthenticateAgainstProtectionSpace: and
connection:didReceiveAuthenticationChallenge:. In
connection:didReceiveAuthenticationChallenge:, the delegate must call SecTrustEvaluate to
perform customary X509 checks.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

13

Lack of Jailbreak Detection

Description:

Jailbreak detection mechanisms are added to reverse engineering defense to make running
the app on a jailbroken device more difficult. This blocks some of the tools and techniques
reverse engineers like to use. Like most other types of defense, jailbreak detection is not
very effective by itself, but scattering checks throughout the app's source code can improve
the effectiveness of the overall anti-tampering scheme.

Problem Details

The source code review revealed that the mobile application does not perform any checks or
validations to determine if it is being executed on a rooted device. This oversight leaves the
application vulnerable to several security risks. A jailbroken device bypasses iOS's normal
security model. iOS protects applications using iOS sandboxing features, but apps can break
out of the sandbox on a jailbroken device. A malicious application on a jailbroken iOS device
can gain access to sensitive data created or stored on the device and data written to device
logs.

Proof of Concept
The following is needed in order to reproduce this issue:

As shown in the POC, the application is successfully installed in the jailbreak device as cydia
is present in the device.

® =

$0.00
Multi-coin wallet 1

Ethersum
0.00 ETH

MARSDAO WALLET APPLICATION AUDIT

14

Severity
An attacker who has gained access to a victim's device will be able to access protected data
stored in the application's sandbox.

Recommendation:
Filesystem-based Detection: The jailbreak process modifies the filesystem by adding,
moving and changing files and directories. New Files Created- During the jailbreaking
process, some additional files are created on the device. Looking for these files is a simple
way to detect a jailbreak. List of files are as follows:
[private/var/lib/cydia/private/var/mobile/Library/SBSettings/

Themes/

[Library/MobileSubstrate/MobileSubstrate.dylib /System/Library/

LaunchDaemons/com.saurik.Cydia.Startup.plist/

[var/cache/apt/ /var/lib/apt/ /

var/lib/cydia/

[var/log/syslog/ /var/tmp/cydia.log/ /bin/bash/ /bin/sh/

Jusr/sbin/sshd/ /usr/libexec/ssh-keysign/

Jusr/sbin/sshd/

[usr/bin/sshd/ [usr/libexec/sftp-server/

/etc/ssh/sshd_config/ /etc/apt/

[Applications/Cydia.app/

[Applications/WinterBoard.app/

[Applications/SBSettings.app/

Directory permissions - Certain permissions on partitions and folders can also indicate a
jailbroken device. During the jailbreaking process, access to the root partition is amended. If
the root partition has read write permissions, the device has been jailbroken.

Writing files - On jailbroken devices, applications are installed the Applications folder and
thereby given root privileges. A jailbroken device could be detected by having the app check
whether it can modify files outside of its sandbox. This can be done by having the app
attempt to create a file in, for example, the /private/ directory. If the file is successfully
created, the device has been jailbroken.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

15

API-based Detection:** Detecting a jailbroken device based on API calls can be both
effective and difficult for a malicious individual to recognize and bypass. API calls like
system(), fork(), dyld functions, etc are difficult to bypass.

Cydia Scheme Detection:** Most jailbroken devices have Cydia installed. While an attacker
can change the location of the Cydia app, it's difficult to change the URL scheme for the
Cydia app. If calling Cydia's URL scheme (Cydia://) from your application is successful, you
can be sure that the device is jailbroken.

Snapshot Data Disclosure

Description:

Manufacturers want to provide device users with an aesthetically pleasing experience at
application startup and exit, so they introduced the screenshot- saving feature for use when
the application is backgrounded. This feature may pose a security risk. Sensitive data may
be exposed if the user deliberately screenshots the application while sensitive data is
displayed. A malicious application that is running on the device and able to continuously
capture the screen may also expose data. Screenshots are written to local storage, from
which they may be recovered by a rogue application (if the device is rooted) or someone
who has stolen the device.

For example, capturing a screenshot of a banking application may reveal information about
the user's account, credit, transactions, and so on.

Problem Details

The field-nation iOS application stores snapshots in local storage when the application is
backgrounded. The snapshot includes sensitive data such as username and passwords An
attacker with local access to the device, or one who is able to infect the device with
malware, would be able to read this data.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

16

Proof of Concept
The following is needed in order to reproduce this issue:
 Jailbroken iDevice.
e Access to the application.
Step 1 - Start the MDAO iOS application and navigate to the dashboard.
Step 2 - Switch to another application so that the application is backgrounded.

Step 3 - SSH into the jailbroken iOS device.
Step 4 - Identify the data directory (sandbox_id) for the MDAO application. Pull the
application data to the host machine using the below command.

sftp > get -r /var/mobile/Containers/Data/Application/<sandbox_id>/

wPFtm gt -1 fu -:.'u|::-.lmu:umm»u.umlummr:m. 283104 MSIFdalt

FETENLAG CANTIELLE/CEACED RETES DTS AR] Lo I T Mk O Tk L Ik P = 5 b Bl
Astrbesiag (Kr 'ulr-ﬂl.lmvulnuunnu"“llulIalrnh!l-ﬂ.‘.ﬂ AT Ate secTe by

Marrbinlag (P uanasan mehd]a 0t il rere it s waal Laat Las f vak mer 11

[[T W R PR
HSTTLElag {BUiNuEa) r AR] 4] Pt i LT LA (L PR - R34 -0 - BT i B BT

saTEisgs, ALen]
LaEy Lhe3 333.5a04
T
A i G
LeE iRk DBy

135513 &
FEEEEEE 3

L L]
_amragad metadiie, pl e (T I T Y
b DA o B b L DAINF 1841 13-A715- TV BRI By
10T 4 P LA LA UBAPTRT 1= R84 L3110~ BT AR BAAL L BT i
ot 10T] ret B s Aa L L] L RS FOE PR 8= 4 L1008 = BBEUT 4 EBSAEL L (et ArarALph b, drte
Al] 0 D rored B e Agme | e | Lo £ DRA POHIP 1 - 6004 - 4 B0 -A004.
A A P B LA AR08 1LV~ MO 4L WAL By Bk ot arannipt
L LR et T (ELIRE LR STo LY D ey T RO E T LI

dwem Aibmns eyl 1o L app
fram Aavkana] 181 apps
B R T R T T T

LaEn sl MRSy e
e Lhy MRSy e
aEa s wn i] Do et B A | L L DA PP B < N0 - B DB | by | B o x pas lpiban
EIIIE-IIJIJHIIrﬂllhlwllillhllmm'l B RNNT ANEa FBDOT AR RAARR L (brary | Gechea e -lrllll.ll‘
w10 Do 0 ror o B b L e L A PO Bl {1
EIIIJ-I:JI.IEI-'HIml.lll-ll.l’hllilll.nll'm?ﬂ'll R R R R T mllmlllllmﬂb-lhifi- wranilptbon. dstndonn tovbass wellen appivili ripmrinlent lee

Fuwm iinbana] 191 apprvbi ripmrin

lllrln-l.nq fITE

n-rrmlq EEERE R R B Dot | e Dt A] L L b B T T e T P T T PE T TTE T PR e
hl.ur.. |.-|u siaranane La wEA Dl HllI
intarssl_Lnprwssatal by sianscens paE BERT RS0 BARSe e
iRl -ll.lrlurl L Pl ol b
Amrrien g (prinate/ nue b Jn/Tananid e Batnanl Laa Lo a3 Linm-lury [CeTmer
lu--..- L, T 4137 rm.um-u-m -
T e o n.mluulm:.lmmm:wummmm |.u| pq T |:|.'| =t
r-ll:l.'wmInuuuwﬂulmllu.'mhu RFBA-4H1-A 00 Mxmlluh- |h|uﬂt-l-|h|-tfn|-|hl willi—weRany
o 1S i | P B VA L DA PR MR -0 0T lq'.lnquqﬂl\lhqul:umunﬂj ki a.unmm PLICT
o 1 o Pt B g L L ¥ - ERA -4 5 3-R50a- LT T Eb ok i g b b ke 8 (EETER R p——
o 1 i P A L B PR - R - 3 -.-u-oq:m-uqu |h|n|ﬂwhﬁf|ﬁh||l—||n-nlnn.lp|¢u AR g] el L
1] L] L4 L B TR -3~ 1 BT B | T Pk g L 0 w4 BTN L
ol 1 G] P B Vg L PR - B - R R milm\.lmnrl:nhnf-mh #A h-rreat 1 ANSTER P14 M i i Lol Lo
T T M e e T T T PRCE AT RS gl ndhn - wenta SETETA O 1§l _alal
o 1A P B 1 | L e DR 3-8, FEEITAR 1ENF -um-nm [T
(OOt L & bEEG MW
LN M7 MR B

ekl Temd g d v B dnsdpe L boa b ol PRAPIOT P BB SRTT-ATRE - BICOT K BARL! L by Cerhe fgangle cnd bpowvma ks SSETERAR DA a i a B rauge | gt _batob_ dete
Patriovimg (prasebe/ser/ ol leComd ol rore Do b | el Dae /DBATORF T o8008 = U 27 -AT 00~ HEOUT 4 R RAARL! L | brary Cothealie. imtaree . boa
usdatus. Len LSRN B2 TAORSRSE BEOER

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

17

Step 5 - Navigate to SplashBoard and open ktx ext file.

—
- .. L]~ OCa3DFis-BEA2-418... Al L= R i | o |
FRE T LELE = B]
| ESSRE U iy &0 1110 Fid
- . Lrary Frtay @i 1113 Pud — [+ = &
o Apcicwiion Supoort yoimy wit 11 12 Pid
+ N Cachea cony @t 1111 Pl J
[ST silasy &t 1110 FRd lT
O Pl Todey wf 17T PR $G.DD
- PrefarsrcEs Today st 11 P
PSRRI D T TR iny ar Fepad
B Sasml Ay bl v Blale wikasy @l 11
- . SpleshBosed Todey @t 11 17 P B LR =i waid et 1 . m . o
W Snapshois sy mi 1113 Pad
PO Saee mie UL T SR e silasy @0 110TH Rl
B ScanaleE. . . i S skt @ TITH PR Eviminiiin j TeRele]
[SCABDED.. 37 0de kix Eodey ai 11 7 PR o ETE Tl
[SdCsBASE . Pl ids sciay wi 111 P
© N cResarine aimd weilas @l 1110 PRl
B ebEA sehgsy @b 11 LT}
- AshaiisElEns voimy w11 [
[UL TS] ki a0 1118 PR
- Lol Bl aye Epgiay &1 11770 PR
LRl LE . i}
- W E AL el AEREATE ey @i -1 Pl
- i wwmirare wibasy @i 1171 Fna
- 8y Togdey gl 11 11 PRl
B rscsict o 11+ E
Ay s ey S0 1110 P
T wilags @l 1117 pad

Step 6 - Observe that the screenshot of the application is stored when the HOME button is
pressed and stored in the application cache directory on the filesystem.

Severity
This vulnerability represents a minimal exposure to exploitation. Only the users of the mobile
devices to which the attacker has access are affected by this vulnerability.

Recommendation:
As a best practice, consider preventing background screen caching if the application
displays sensitive data.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

18

Insufficient Debugging Protections

Description:

Anti-tamper techniques must be used to prevent attackers from back-dooring legitimate
applications. Though none of the solutions are foolproof and a motivated attacker could
bypass the protections given a sufficient amount of time, the mitigations do provide a barrier
against attackers. Due to the sensitive nature of the application and the data that it
accesses, defenses against attacks of this nature greatly increase the security posture of
organizations that deploy applications.

Problem Details

The MDAO i0OS application does not sufficiently defend itself against reverse engineering
and runtime tampering tools. This allows attackers to attach debuggers and reversing tools
with little to no modification of the application, significantly speeding up exploit discovery
and development.

Proof of Concept

Step 1 - Start the Frida server on the iOS device.

sh-3.2# frida-ps -Ua

PID Name Identifier
4
3238 Calendar com.apple.mobilecal
3999 Camera com.apple.camera
4271 Cydia com.saurik.Cydia

4267 MDAO Wallet com.ttmbank.wallet.app

Step 2 - Use frida-ps to verify that the Frida server is ready. Assuming that the iOS device is
connected to the host machine via USB, use the following command on the host machine.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

19

frida-ps -Ua

sh-3.2# objection -g cum.ttmbank.walletlépp explore
Using USB device “iPhone’

L= 2 00«0 |
O R Y O
| ___]|(object)inject(ion) vi.11.8@

Runtime Mobile Exploration
by: ®leonjza from @sensepost

com.ttmbank.wallet.app on (iPhone: 13.3.1) [usb] # §

Step 3 - Connect to the application using Objection, which will inject the Frida library into
the application and allow runtime manipulation. Notice that the application is restarted, but
shows no indication that the library injection has occurred.

#objection -g com.fieldnation.ios.mobile explore

ios list hooking list classes
ios list hooking search classes login

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

20

cos, ttmbank. wallet.app on (iPhone: 13.3.1) [usb] & ios nooking list classes login
AddbsintheContext
AfAbsintheSigner
AtAbsintheSignerContextCache
AAACCount
AAkccountManagementUIRespanse
AddccountManager
AfAddEmailUIRequest
AddpplelDSettingsRequest
AdAppleTVRegquest
AdAttestationSigner
AdduthenticateRequest
AfAuthenticationResponse
AbdutoAccountVerifier
AddvailabilityRequest
AAAvailabilityResponse
ACertificatePinner
AAChildAccountCreationUIRequest
AACloudkitDevicesListReguest
AACloudKitDevicesListResponse
AACloudKitMigrationStateRequest
AACloudkitMigrationStateResponse
AClovdKitStartMigrationRequest
AACloudKitStartMigrationResponse
AACospleteEmailvettingRequest
AdCompleteEmailVettingResponse
AfDataclassManager

AdDevice

ADevicelnfo

AADevicelist
AdDevicelistRequest
AADevicelistResponse
AdDeviceProvisioningRequest
AaDeviceProvisioningResponse
AADeviceProvisioningSession
AAEmailvettingRequest
AAFMIPAuthenticateRequest
AAFMIPAuthenticateResponse
AdFamilyDetailsRequest
AdFamilyDetailsResponse
AAFamilyEligibilityRequest
AdFamilyEligibilityResponse
AAFamilyInvite

AbFamilyMember
AAFamilyMemberDetailsUIRequest

com.ttmbank.wallet.app on (iPhone: 13.3.1) [usb] # ios hooking search classes crypto
TangemSdk.CryptoUtils

_TreveCryptoKit24CoreCryptoChaChaPoly ImplP33_1EEAZC1S4BB7A5EATTEA4IBIDGASTFDETContext
_TtCvoCryptoKitl7CoreCryptoGCMImpl P33_ALBAEBBIBACADTAZE6T4BT18ATEI6CIC1TContext
FConfigCryproUtils

MCCrypto

MRCryptoPairingSessionBlockDelegate

MRCryptoPairingIdentity

MRCryptoPairingSession

MRCryptoPairingMessage

NEIKEvZCrypto

DESPFLEncryptor

WBSHistoryCrypto

_MRCryptoPairingMessageProtobuf

Found 13 classes
com. ttmbank.wallet.app on (iPhone: 13.3.1) [usb] # J}

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

21

Severity
This vulnerability is difficult to exploit. However, many off-the-shelf tools exist in order to
implement attacks which leverage this vulnerability.

Recommendation:

Use anti-debugging techniques. Anti-debugging techniques, such as Android's
Debug.isDebuggerConnected() available from the android.os.Debug class or using sysctl to
check for the presence of a ptrace-based debugger on iOS, will defend the application
against debugging, memory manipulation, and reverse engineering. Note that techniques
such as using PT_DENY_ATTACH will not work as demonstrated on other BSD based
systems, as the ptrace syscall itself is not in the public iOS API and will therefore be blocked
from release by Apple.

Perform checks for common reverse engineering tools. Checking for the existence of open
D-Bus ports (which are used by Frida), detecting code trampolines, in which the flow of code
is diverted into attacker controlled code and is used commonly by Substrate, and scanning
process memory for known artifacts of common runtime manipulation tools would allow the
application to detect that runtime manipulation is occurring and take appropriate action.

Perform application signature checks. Ensure that the application performs a checksum
check or some validation mechanism to detect tampering of the application. If the
application is tampered with, the detection scheme should take a reactive approach and
prevent malicious execution of the application.

Xcode - In Xcode, there are certain checks that an attacker can use to determine whether an
application is being debugged or not. In Xcode, use the following piece of code wherever
you want to put a check for a debugger.

#ifndef DEBUG
SEC_IS_BEING_DEBUGGED_RETURN_NIL();
#endif

Another technique to prevent these debuggers from attaching to your application is by
using the ptrace function. Using this function with a specific parameter, you can just deny
any other debugger the ability to attach to your application. The ptrace function is used by
the debuggers like GDB and LLDB to attach to a process. Using the ptrace command with
the parameter PT_DENY_ATTACH will tell the function to not allow this application to be
traced..

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

22

Lack Of Token Name, Symbol And Decimal Validation

Description:

The Lack of Token Name, Symbol, and Decimal Validation vulnerability poses a significant
risk to the security and usability of the MDAO Wallet iOS application. This vulnerability allows
for the creation and addition of tokens without proper validation of their name, symbol, and
decimal places. Attackers can exploit this weakness to deceive users, manipulate token
values, and potentially execute financial fraud.

Problem Details

The MDAO wallet iOS application allows users to import custom tokens, and display the
token name and symbol in the wallet UI. The ERC20 token contract standard doesn't have
any restrictions on any of the token properties, and anyone can deploy token contracts on
the blockchain. Once a token is added, the wallet will fetch the information and display them
in it's interlace.

Proof of Concept

Step 1 - Navigate to the dashboard.

11:39 " = EED
= 2 =
1T
$0.00 o
rMulti-coin wallet 1 ~ g =+

BB 50.00
0Oy B -
% MarsDAC S0.00

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

23

Step 2 - Add New Token and select network.
12:45 ! = BB

Add token =1

BB (BHNB)

FMarsCAC [FMOACY)

®$ 0 0"

Movalamche [ANAIK)

Bl rNEADR Drotoool (MEAD) i

Farnuosrm [(FTRA)

walas [WLX) £

£ BitTorrent (BTT)

B prokens GALA (GALA) :

i PancakeSwap Token [Cake)

12-a8s e 9 EE

< Select network =3
Ethareurn [ERC20]

BHE Chain (BEPZ0)

TROM [TRCHD)

TROMN (TRC20)

Palyrgor [EREC20H)

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

24

Step 3 - Import the following token in the BNB Chain.
“Oxe9bb17e159Ff8551e08616Fd310192ea57BBe52b”

1Z2:as X =
. Add new token =
P bsaars Ty e =
Coantract adcdcdrass PASTE

12:47 2 = EEW
< Add new token =
MHabweorks Ty e >

HMNEBE CFuair [HE

Coniract schor s

Oxegbb17e159FIBES551e08616Fd3 1019225 TE

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

25

B
5
i

=

Pl Lo b Lyers

BB Chain

FilaaLinvsa s

BHNE (BrHMB)

Corntract adorsss

OxeSbbl7elSoFMAS5e 08616 FAdEIN0T9Z2eaSTBBaS2
=]

o E T gt]
sooript>alert(lo-script=alert (123), <
script=<script=alert(123);</
script=<script=alert123).=/
sScript=-script=aleru23). </
script==script =alert{123); =/
script=<=script=alert(123);</
script~=script=alert[T23):</
script=<script=alert123). </
script==script=-alertI23); =/
zcript>=soript>alert(123); =/
script>==script>=alert(125);=/
script><-script>alert(1Z23)</
script=<script=-aleru123).~</
script==script=alberv123):=/
script==script =alert{1235); =/
script==script=alert{123):;</
script=<-script=alart(123);</
script=<script-alertT23) </

PRl m e e T i —————————————

AZ 50 = = =

{ APl Ay Ty
e = e L T P EN T
e g R e T o T e S TR
o et =l T2 S
soript = —noript = aler T T2 5=
Er e gl ml St e g T md S TP g i 5 Tl
SCripr=<sscripr=-alercIZSC<
E Tl g) et il T el T P i i 5 TR
B L = e e = e T
T L S L e T
ST il s et e -
Tt = et = e T TR
o Pt = ot =alert [TZ 5=
ol e st ol T V2 S
=ori pre-<sscript—alerolIZ23)c<#
B i DT =S DT aler oI
BT DL = S = e TR
T L S L e N
T = gl =1 SR = T BT P i e TR
TRt s encriprt =milert (T 5=
EOriEt = =Tt =t (TE R
= Tt = e T T2 S
soript--scrpcaler o 1250
SO F i P S DT = S T 2) A rier = {1 2) AT ripr =

T A i

o

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

26

12:49 u = G5

= #OS @
2 I

$0.00 =

Multi-coin wallet 1 ~ IO +

BMNEB S0.00
000 BMB =00, T
MGrsDSOy S0.00
OO0 kDA -1

~geripU-akert{l-script-aler 123~
seript-<script-abert[123)~
script=-script=abert 123}~/
script=escript =sbert [123)=/F
script=~=scrnpt=abert (T2 5] =/
script>=soript>abert (125} =/
script><script>akert(123); </
script><script>alert(123);</
SChpt<sonptrakert(123);</
SCript=<sonpt=abart[123):</
script=<script=abert123):</
soFipt=<script=akert123):=</
scripl=<seripl-akern [123) =/
seripi=<script=abery [123) </
script=-tscript=abery T2} =/
script==soript=aslert (125);=/
script=<script>abert{12%);</
script><script>akert{1235);</
script><script>alert(123);</
script><sonpt>alert (TZ3);</
script><soript>alert [T23):</
scTipr=<script=alert [123):</
seript=<seript=alern1Z3):</
script=<script-abert[T23) -~/
script=-script=abert 123}/
script==script=sbert {1 23)=/
sCript=—soript =abert T2)=/
script=2S=fonpt=

DD

Precondition
Importing a crafted malicious token can bring a negative user experience to the user, and
the attacker can potentially craft a message to perform a phishing attack.

Misleading Token Information: Attackers can create tokens with deceptive names and
symbols, leading users to believe they are interacting with a legitimate or well-known token.

Value Manipulation: By manipulating the decimal places associated with a token, attackers
can alter the perceived value of the token, potentially leading to financial loss for
unsuspecting users.

Recommendation
It's recommended to place restrictions on the token name, symbol, and decimals similar to
the following:

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

27

Lack of _RESTRICT segment in the Application Binary

Description:

The dynamic linker (dyld) is the process that loads and runs binaries on OS X and iOS. This
process also has some very special environment variables that can modify its normal
behavior, one commonly used environment variable is DYLD_INSERT_LIBRARIES: This is
commonly used to inject dylibs into applications that modify behavior or patch specific
functionality.

So when an application is launched the binary is run through dyld and that processes the
binary file. This finds what libraries it needs to load and link against to generate a complete
symbol table. Doing this requires parsing through the binary header, while it does this it can
trigger flags in dyld based on what segments are present in the binary.There is a special flag
(_LRESTRICT) that will be set for binaries that are marked as "restricted". This special flag
means that the dynamic linker should ignore any set environment variables; absence of
these given flags allows an attacker to modify/ patch the application in loading malicious
dylib by abusing DYLD_INSERT_LIBRARIES env variable.

This makes the app vulnerable to code injection attacks in the following ways :

Prison Break Injection: Through Modification DYLD_INSERT_LIBRARIES The value of the
environment variable to insert the dynamic library and executeNon-escape injection: Pack
the custom Framwork or dylib library directly into APP and re-sign it.

Using yololib to modify MachO files and add library paths. Dyld loads and executes when the
application starts.

Problem Details

During testing, it was observed that the application has a Lack of
_RESTRICT

segment in the application binary

Proof of Concept

The following is needed in order to reproduce this issue:
» Access to the application file.

* MachOView file viewer

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

28

Steps to Reproduce

Step 1- Analyze the application binary in MachOView.
Step 2 - Observe the Mach64 header lacks the _RESTRICT
segment in the application binary.

Severity

An attacker can inject dylibs into applications that modify the behaviour of the application or
inject arbitrary code during runtime by loading malicious dylib by abusing
DYLD_INSERT_LIBRARIES

env variable.
Recommendation

Find Linker Flags in Engineering Build Settings and add fields - WL,-
sectcreate,__RESTRICT,__restrict,/dev/null

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

29

Binary makes use of insecure API(s)

Description:
The product does not use or incorrectly uses a protection mechanism that provides
sufficient defense against directed attacks against the product.

This weakness covers three distinct situations. A "missing" protection mechanism occurs
when the application does not define any mechanism against a certain class of attack. An
“insufficient" protection mechanism might provide some defences - for example, against the
most common attacks - but it does not protect against everything that is intended. Finally,
an "ignored" mechanism occurs when a mechanism is available and in active use within the
product, but the developer has not applied it in some code path. https://cwe.mitre.org/data/
definitions/693.html

Problem Details
The MDAO iOS application uses insecure API(s), which can lead to a buffer
overflow:

0x00000001000d04e0 422 __memcpy_chk
0*x00000001000d0744 496 _fprintf
0x00000001000d0858 548 _memcpy
0*x00000001000d0OcO0 626 _snprintf
0*x00000001000d0cOc 627 _sscanf
0x00000001000d0c30 630 _strlen
0x000000010011c660 422 __memcpy_chk
0*x000000010011c7f8 496 _fprintf
0x000000010011c8b0 548 _memcpy
0*x000000010011cb20 626 _snprintf
0*x000000010011cb28 627 _sscanf
0x000000010011cb4@ 630 _strlen

Proof of Concept

The following is needed in order to reproduce this issue:
* Access to the application file.
* Otool, available at - https://github.com/Imposter/otool

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

30

Steps to Reproduce
Step 1- Navigate to the application directory.

Step 2 - Run the command and observe the list of unsafe functions which can lead to a
buffer overflow.

otool -Iv TTM\ _Wallet | grep -E 'strncat|strcpy|vsnprintf|sscanf|strtok|scanf|strcat|sprintf]|
printf|strlen|memcpy|strncpy’

sh=2.2# otool -Iv TTHY _Wallet | gres —E ‘strnest|stropy|vergeintt|sscant | striok|scenf |streat|sprint|printf | stz len |mescpy | stoncpy !
B o @bt] | BR A o ie il 4337 ___mescpy _chik
e lBEEDE 1 BOO BB TLL &04 _farintl

B deieppp Dl | HE g PRELE Bil _memopy

W a0 428 _smprintf

i iEEE0E] B0 I8 BL 837 _seeant

B dsieispp 0l | BOG R 1 83% _strlan
IaddbbRl IR0 Lkl 432 __ memcpy_chi
DidssEERn I BN1 L TRR a9d _farintt
Badadeisping | B0 L Lo fn Gl _semopy

CRLS o LD RS- Py 8dd _seprintf

[LEL o o L LRRL R] 437 _aweant
DudsabBn 1801 Lo 838 _strilan
sh-3. 70

Severity

The likelihood of an attacker exploiting this issue successfully is low. An attacker that is able
to exploit this issue, however, would gain full control over the elsa iOS application and could
use it to compromise the underlying device.

Recommendation
Enable stack canaries flag in swift and make sure that -fstackprotector-all flag gets enabled.

MARSDAO WALLET APPLICATION AUDIT

/i zokyo

31

We are grateful for the opportunity to work with the MarsDAO team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the MarsDAO team put in place a bug

bounty program to encourage further analysis of the wallet application
by third parties.

I/} zokyo

